
Gauge Theories and the Gauge Argument

Gauge Theories and the Gauge Argument

Robert Moir

The University of Western Ontario
Dept. of Philosophy

February 5, 2009



Gauge Theories and the Gauge Argument

Table of Contents

1 Gauge Theories

2 Classical Electromagnetism

3 Lagrangian Mechanics of Fields
Lagrangian Mechanics of Point Particles
Lagrangian Mechanics of Fields
Relativistic Field Theories

4 The Gauge Argument for a Complex Scalar Field

5 Yang-Mills Theory



Gauge Theories and the Gauge Argument

Gauge Theories

1 Gauge Theories

2 Classical Electromagnetism

3 Lagrangian Mechanics of Fields
Lagrangian Mechanics of Point Particles
Lagrangian Mechanics of Fields
Relativistic Field Theories

4 The Gauge Argument for a Complex Scalar Field

5 Yang-Mills Theory



Gauge Theories and the Gauge Argument

Gauge Theories

Gauge Theories

The Fundamental Theories of Contemporary Physics

General Relativity — Classical Field Theory (Gravity)

Standard Model — Quantum Field Theories

Quantum Chromodynamics (QCD) (Strong Force)
GWS Electroweak Theory (EWT) (Weak and EM Forces)



Gauge Theories and the Gauge Argument

Gauge Theories

Gauge Theories

The Fundamental Theories of Contemporary Physics

General Relativity — Classical Field Theory (Gravity)

Standard Model — Quantum Field Theories

Quantum Chromodynamics (QCD) (Strong Force)
GWS Electroweak Theory (EWT) (Weak and EM Forces)



Gauge Theories and the Gauge Argument

Gauge Theories

Gauge Theories

The Fundamental Theories of Contemporary Physics

General Relativity — Classical Field Theory (Gravity)

Standard Model — Quantum Field Theories

Quantum Chromodynamics (QCD) (Strong Force)
GWS Electroweak Theory (EWT) (Weak and EM Forces)



Gauge Theories and the Gauge Argument

Gauge Theories

Gauge Theories

The Fundamental Theories of Contemporary Physics

General Relativity — Classical Field Theory (Gravity)

Standard Model — Quantum Field Theories

Quantum Chromodynamics (QCD) (Strong Force)

GWS Electroweak Theory (EWT) (Weak and EM Forces)



Gauge Theories and the Gauge Argument

Gauge Theories

Gauge Theories

The Fundamental Theories of Contemporary Physics

General Relativity — Classical Field Theory (Gravity)

Standard Model — Quantum Field Theories

Quantum Chromodynamics (QCD) (Strong Force)
GWS Electroweak Theory (EWT) (Weak and EM Forces)



Gauge Theories and the Gauge Argument

Gauge Theories

Field Quantization of Classical Fields

The quantum field theories of the Standard Model are
obtained by ‘quantizing’ classical field theories.

It is sometimes claimed that these classical field theories can
be ‘derived’ using a kind of argument called a gauge
argument.
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Gauge Arguments

The Lagrangians of the classical field theories are invariant
under a group of transformations of the field.

Such a symmetry (invariance) is called a global symmetry,
since the transformation of the field that leaves the
Lagrangian invariant does not depend on the location in space
or spacetime.

The gauge argument proceeds by making the Lagrangian
invariant under ‘local’ transformations of the field, local in the
sense of depending on the location in space or spacetime (on
which the field is defined).
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Gauge Theories

Gauge Transformations

The transformations of the fields in gauge arguments do not
change the physical state of the field, they are transformations
in an ‘internal space’ of the field, in a sense to be described
later.

Consequently, more than one field state in this internal space
describes the same physical field.

The different states that are physically equivalent are loosely
analogous to the arbitrary choice of gauge in the sense of an
arbitrary choice of ‘length’ scale, e.g. feet or metres, seconds
or years, kelvin or rankine, etc.

Consequently, the transformations leaving the Lagrangian
invariant are called gauge transformations.
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Gauge Theories

Gauge Arguments

A gauge argument starts with a Lorentz covariant Lagrangian
of a classical field that is invariant under a global gauge
transformation, or gauge transformation of the first kind.

An attempt is then made to make the Lagrangian invariant
under the same kind of transformation that varies depending
on the spacetime location, i.e. a local gauge transformation,
or gauge transformation of the second kind.

The initial Lagrangian is not invariant under a local gauge
transformation and the the gauge transformed Lagrangian
ceases to be Lorentz covariant.

Terms are introduced to restore Lorentz and local gauge
invariance, which introduces one or more vector fields Aµ(xν).

Then allowing Aµ to contribute directly to the Lagrangian
introduces a gauge field tensor Fµν for each Aµ.
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Gauge Theories

Gauge Arguments

By choosing certain symmetry groups under which the
Lagrangian is invariant, it is claimed that new physical fields
Aµ that interact with the fields you begin with are introduced.

Beginning with a field φ, by choosing the symmetry group to
be U(1), φ picks up an interation with the classical
electromagnetic field, for SU(3) φ picks up an interaction
with a ‘colour field,’ and for U(1)⊗ SU(2) φ picks up an
interaction with an ‘electroweak field.’

By starting with the appropriate sort of field φ, these
(classical) field theories can be quantized to produce the
quantum field theories of the standard model (QED, QCD and
EWT).

Thus, the gauge argument is supposed to show that the fields
of the standard model arise “naturally” from the requirement
that a given global symmetry holds locally.
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Classical Electromagnetism

Charges and Currents

The fundamental equations for electromagnetic theory are
Maxwell’s Equations. There are the two homogeneous equations:

∇ · B = 0, ∇× E +
∂B

∂t
= 0,

and the two inhomogeneous equations:

∇ · E =
ρ

ε0
, ∇× B− 1

c2

∂E

∂t
= µ0J,

where ρ is the density of electric charge and J is the density of
electric current.
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Classical Electromagnetism

Potentials

Since ∇ · B = 0 and for any vector field f, ∇ · (∇× f) = 0, the
magnetic field can be defined in terms of a vector potential A,
such that

B = ∇× A.

This enables the other homogeneous Maxwell equation to be
written as

∇×
(

E +
∂A

∂t

)
= 0.

Then, since for any scalar field f , ∇× (∇f ) = 0, the quantity
above with the vanishing curl can be written in terms of a scalar
potential ϕ, such that

E +
∂A

∂t
= −∇ϕ.
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Classical Electromagnetism

Potentials

Thus, we can write the electric and magnetic fields, E and B, in
terms of a vector and scalar potential, A and ϕ, as

B = ∇× A, E = −∇ϕ− ∂A

∂t
.
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Classical Electromagnetism

Gauge Freedom

Since the magnetic field is defined as the curl of the vector
potential A, the gradient of any scalar field Λ can be added to A
without changing the magnetic field.

Thus, the transformation

A −→ A′ = A−∇Λ

leaves the magnetic field invariant. So by describing the magnetic
field in terms of a potential a descriptive freedom is introduced,
since there is no unique vector potential that determines the
magnetic field.

This descriptive freedom is called gauge freedom and the
transformation of the potential leaving the field invariant is called
a gauge transformation.
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Classical Electromagnetism

Gauge Transformations

If the vector potential is transformed as

A −→ A′ = A−∇Λ,

then in order to leave the electric field invariant we must also
transform φ as

ϕ −→ ϕ′ = ϕ+
∂Λ

∂t
.

Thus, we have that under a gauge transformation

(ϕ,A) −→ (ϕ,A) +
(
∂
∂t ,−∇

)
Λ.
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Classical Electromagnetism

Special Relativity

Maxwell’s equations can be written in Lorentz covariant form.
Local conservation of charge, which is expressed by the continuity
equation

∂ρ

∂t
+∇ · J = 0,

implies that the charge and current densities, ρ and J, together
form a 4-vector Jµ (and adopting units such that c = 1):

Jµ = (ρ, J).

Then the continuity equation can be written in a Lorentz covariant
form as

∂µJµ = 0,

given the summation convention and where ∂µ is the covariant
differential operator

∂µ =

(
∂

∂t
,∇
)
.
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Potentials Form a 4-vector

It can be shown that the scalar and vector potentials, ϕ and A,
together form a contravariant 4-vector

Aµ = (ϕ,A).

Maxwell’s equations can be written in a Lorentz covariant form in
terms of Aµ.

Thus, the gauge transformation

(ϕ,A) −→ (ϕ,A) +
(
∂
∂t ,−∇

)
Λ

can be written as
Aµ −→ Aµ + ∂µΛ,

where ∂µ =
(
∂
∂t ,−∇

)
is the contravariant differential operator.
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Classical Electromagnetism

Lorentz Covariant Maxwell’s Equations

Given the expressions for E and B in terms of the scalar and vector
potentials above, the various components of the fields can be
expressed in terms of the components of Aµ.

For example, we have
for the x components that

Ex = −∂Ax

∂t
− ∂ϕ

∂x
= −(∂0A1 − ∂1A0),

Bx =
∂Az

∂y
− ∂Ay

∂z
= −(∂2A3 − ∂3A2),

given Aµ = (ϕ,A) and ∂µ =
(
∂
∂t ,−∇

)
.
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Classical Electromagnetism

Lorentz Covariant Maxwell’s Equations

The six equations for the six components of E and B determine a
second rank, antisymmetric field strength tensor

Fµν = ∂µAν − ∂νAµ.

Maxwell’s equations can be written in Lorentz covariant form in
terms of Fµν .
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Classical Electromagnetism

Lorentz Covariant Maxwell’s Equations

The two inhomogeneous Maxwell equations can be written as

∂µFµν = Jν ,

with Jν = (ρ, J) the 4-current.
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Classical Electromagnetism

Lorentz Covariant Maxwell’s Equations

The two homogeneous Maxwell equations can be written as the
four equations

∂λFµν + ∂µFνλ + ∂νFλµ = 0.
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Lagrangian Mechanics of Fields

Lagrangian Mechanics of Point Particles

Lagrangian Formulation of Mechanics

The Lagrangian formulation of mechanics characterizes some
physical system in terms of independent generalized coordinates qi

and their time derivatives q̇i .

The number of independent coordinates is determined by the
number of degrees of freedom of the system.

For example, an ideal pendulum has one degree of freedom and
can be described in terms of the angle θ that the string makes with
the equilibrium position of the string (vertical) and its time
derivative θ̇.

The Lagrangian L(qi , q̇i , t) = T − V , where T is the kinetic
energy and V the potential energy of the system.
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Lagrangian Mechanics of Fields
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Lagrangian Formulation of Mechanics

The motion of the system from t1 to t2 is determined by finding
the path such that the action integral

S =

∫ t2

t1

Ldt

has a ‘stationary value.’

That is to say, the system follows the path
such that small changes of that path, with t1 and t2 fixed, leave S
unchanged. This can be expressed by saying that the motion is
such that the variation of the action integral for fixed t1 and t2 is
0, i.e.

δS = δ

∫ t2

t1

L(qi , q̇i , t)dt = 0.

This is called Hamilton’s Principle.
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Lagrangian Mechanics of Point Particles

Euler-Lagrange Equations

Given the appropriate sort of constraints on the system, such that
the qi can be treated as independent, the variational equation
above can be solved to obtain the Euler-Lagrange Equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

This all yields a formulation of mechanics alternative to one
founded on Newton’s laws.
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Lagrangian Mechanics of Point Particles

Symmetry and Lagrangian Mechanics

If the Lagrangian is invariant under transformations of one or more
of the generalized coordinates qi , then the system has one or more
conserved quantities. This connection is established by Noether’s
theorem. Thus, symmetries of the Lagrangian give rise to
conserved quantities.
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Symmetry and Lagrangian Mechanics

To see how this works, suppose that L(qi , q̇i , t) does not depend
on qk . Then

∂L

∂qk
= 0.

Thus, the Euler-Lagrange equation for i = k reduces to

d

dt

∂L

∂q̇k
= 0.
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Symmetry and Lagrangian Mechanics

Then, letting

pk =def
∂L

∂q̇i
,

we have that
dpk

dt
= 0

or
pk = constant.

pk is a generalized momentum, so invariance of L under changes
in qk implies conservation of the generalized momentum pk .
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Lagrangian Mechanics of Fields

We now shift from discrete generalized coordinates to fields φi ,

φi (xµ) = φi (x0, x1, x2, x3) = φi (t, x , y , z).

The shift can be thought of as shifting from generalized
coordinates qi (t) which are functions of time t, to fields φi (xµ),
which are functions of spacetime location xµ.
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Lagrangian Mechanics of Fields

Lagrangian Mechanics of Fields

We shift from talking about a Lagrangian L to talking about a
Lagrangian density L(φi , ∂µφi ).

The equivalent of the Lagrangian is
the integral of L over all space:

L =

∫
Ld3x .
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The dynamics of the system are calculated by minimizing an action
integral

S =

∫
Ld4x .
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Lagrangian Mechanics of Fields

Consider now just a single field φ.

By determining the field
configuration in some region R of spacetime such that the
variation δS of the action integral is zero when that the value of
the field on the boundary of R is fixed, we obtain the
Euler-Lagrange equations for the field:

∂

∂xµ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0.
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Invariance of the Lagrangian Under Groups of
Transformations

Following a similar but more general argument that leads to the
Euler-Lagrange equations for the field, and assuming that the
Lagrangian density L is invariant under some group of
transformations of xµ and φ, then it follows that there must be a
conserved current Jµ, i.e. there is a Jµ such that

∂µJµ = 0.

This entails the existence of a conserved charge Q, which for some
time t = constant,

Q =

∫
V

J0d3x ,

where V is a 3-volume in the spacelike hypersurface at time t.
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Lagrangian Mechanics of Fields

Invariance of the Lagrangian Under Groups of
Transformations

That the existence of a conserved current Jµ and charge Q is
entailed by the invariance of the Lagrangian density under the (not
here specified) group of transformations is the content of
Noether’s theorem in the present context.

Invariance of the Lagrangian density under translation of the origin
of space and time lead to conservation of momentum and energy,
respectively, and invariance under spatial rotations leads to
conservation of angular momentum.
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Relativistic Field Theories

Klein-Gordon Equation

It is possible to motivate the Schrödinger equation by starting with
the classical energy-momentum equation

p2

2m
+ V = E

and make the substitutions

p −→ ~
i
∇, E −→ i~

∂

∂t

to give (
− ~2

2m
∇2 + V

)
ψ = i~

∂ψ

∂t

by letting the operators act on a wave function ψ.
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Klein-Gordon Equation

If, on the other hand, we are seeking compatibility with special
relativity, we might start with the relativistic energy-momentum
equation

E 2 − p2c2 = m2c2,

which in Lorentz covariant form is

pµpµ = m2c2.
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Following the same prescription we make the substitution

pµ −→ i~∂µ,

which yields (
− 1

c2

∂2

∂t2
+∇2

)
ψ =

(mc

~

)2
ψ

by letting the operators act on a wave function ψ. Notice that
the operator on the left hand side is −∂µ∂µ. Thus, letting
� =def ∂µ∂

µ (and setting ~ = 1 and c = 1), the above equation
reads

�ψ + m2ψ = 0.

This is called the Klein-Gordon equation.
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Klein-Gordon Equation

In quantum field theory the Klein-Gordon Equation describes a
spin-0 quantum field φ, the particles of which have mass m.

For a
real field φ it can be derived from the Lagrangian density (hence
forward Lagrangian)

L =
1

2
ηαβ(∂αφ)(∂βφ)− m2

2
φ2,

where ηαβ is the Minkowski metric.
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The Gauge Argument for a Complex Scalar Field

An Example of A Gauge Argument

Let us consider a field φ that takes complex values. We shall
develop an instance of the gauge argument by considering a
‘Klein-Gordon’ Lagrangian for this field.

A complex scalar field has two real parts φ1 and φ2. Thus, we may
set

φ = 1√
2

(φ1 + iφ2)

φ∗ = 1√
2

(φ1 − iφ2)
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Lagrangian for a Complex Scalar Field

Given the modified Lagrangian

L = (∂µφ)(∂µφ∗)−mφφ∗,

the Euler-Lagrange equations yield two Klein-Gordon equations

(� + m2)ψ = 0,

(� + m2)ψ∗ = 0.
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‘Global’ Gauge Invariance

The Lagrangian

L = (∂µφ)(∂µφ∗)−mφφ∗,

is easily seen to be invariant under the constant phase
transformation

φ −→ e−iΛφ, φ∗ −→ e iΛφ∗,

where Λ is a real constant.

This is called a global gauge
transformation (or gauge transformation of the first kind). The
term constant gauge transformation is perhaps more appropriate,
constant since Λ is a constant (it does not depend on spacetime
location).
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The Gauge Argument for a Complex Scalar Field

Noether Current and Charge

The invariance of the Lagrangian under this constant gauge
transformation gives rise (via Noether’s theorem) to a conserved
current Jµ, i.e. a current satisfying

∂µJµ = 0

and a conserved charge

Q =

∫
V

J0dV ,

i.e. Q = constant.
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The Gauge Argument for a Complex Scalar Field

Gauge Transformation as an Internal Rotation

The constant gauge transformation described above can be
thought of geometrically. Letting

~φ = φ1 î + φ2 ĵ

the gauge transformation can be thought of as a rotation of the
vector ~φ through an angle Λ.

The rotation is represented by the
1× 1 complex matrix e iΛ. Since the Lagrangian is invariant under
all such matrices, the Lagrangian is invariant under the group U(1).
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The Gauge Argument for a Complex Scalar Field

Making the Gauge Symmetry ‘Local’

The next stage in the gauge argument is to make the ‘global’, or
constant, transformation ‘local’, or variable.

This is to say, an
attempt is made to make the Lagrangian invariant under internal
rotations e iΛ(xµ), where Λ is now a function of spacetime location
xµ (such a transformation is also called a gauge transformation of
the second kind). Thought of geometrically, the vector

~φ(xµ) = φ(xµ)̂i + φ∗(xµ)̂j

is (in general) rotated by a different angle Λ(xµ) at each spacetime
location xµ (and in such a way that the amount of rotation
changes smoothly from spacetime point to spacetime point).
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Justifying Making the Gauge Symmetry ‘Local’

Physicists try to justify this move to make the gauge symmetry
local. Ryder (1996) says that

So [for a global gauge transformation] when we perform a
rotation in the internal space of ~φ at one point, through
an angle of Λ, we must perform the same rotation at all
other points at the same time. If we take this physical
interpretation seriously, we see that it is impossible to
fulfil, since it contradicts the letter and spirit of relativity,
according to which there must be a minimum time delay
equal to the time of light travel. To get round this
problem we simply abandon the requirement that Λ is a
constant, and write it as an arbitrary function of
space-time, Λ(xµ). (93)
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The Gauge Argument for a Complex Scalar Field

Is this Justification Acceptable?

Healey criticizes this argument for the following reasons:

This argument cannot work since a constant gauge
transformation is just a special case of a variable one; and

Relativity does not cause such a problem, since invariance of
the field φ under a constant change in phase, i.e. under a
constant gauge transformation, does not require that such a
transformation be carried out physically.

The representation of
the field is only determined up to a constant overall phase,
making constant gauge invariance a theoretical symmetry
rather than an empirical one.

Healey points out that constant phase invariance is not an
empirical symmetry because only phase relations between two
distinct fields are observable. The empirical content of
constant gauge invariance is in the conserved Noether current
and charge.



Gauge Theories and the Gauge Argument

The Gauge Argument for a Complex Scalar Field

Is this Justification Acceptable?

Healey criticizes this argument for the following reasons:

This argument cannot work since a constant gauge
transformation is just a special case of a variable one; and

Relativity does not cause such a problem, since invariance of
the field φ under a constant change in phase, i.e. under a
constant gauge transformation, does not require that such a
transformation be carried out physically.

The representation of
the field is only determined up to a constant overall phase,
making constant gauge invariance a theoretical symmetry
rather than an empirical one.

Healey points out that constant phase invariance is not an
empirical symmetry because only phase relations between two
distinct fields are observable. The empirical content of
constant gauge invariance is in the conserved Noether current
and charge.



Gauge Theories and the Gauge Argument

The Gauge Argument for a Complex Scalar Field

Is this Justification Acceptable?

Healey criticizes this argument for the following reasons:

This argument cannot work since a constant gauge
transformation is just a special case of a variable one; and

Relativity does not cause such a problem, since invariance of
the field φ under a constant change in phase, i.e. under a
constant gauge transformation, does not require that such a
transformation be carried out physically.

The representation of
the field is only determined up to a constant overall phase,
making constant gauge invariance a theoretical symmetry
rather than an empirical one.

Healey points out that constant phase invariance is not an
empirical symmetry because only phase relations between two
distinct fields are observable. The empirical content of
constant gauge invariance is in the conserved Noether current
and charge.



Gauge Theories and the Gauge Argument

The Gauge Argument for a Complex Scalar Field

Is this Justification Acceptable?

Healey criticizes this argument for the following reasons:

This argument cannot work since a constant gauge
transformation is just a special case of a variable one; and

Relativity does not cause such a problem, since invariance of
the field φ under a constant change in phase, i.e. under a
constant gauge transformation, does not require that such a
transformation be carried out physically. The representation of
the field is only determined up to a constant overall phase,
making constant gauge invariance a theoretical symmetry
rather than an empirical one.

Healey points out that constant phase invariance is not an
empirical symmetry because only phase relations between two
distinct fields are observable. The empirical content of
constant gauge invariance is in the conserved Noether current
and charge.



Gauge Theories and the Gauge Argument

The Gauge Argument for a Complex Scalar Field

Is this Justification Acceptable?

Healey criticizes this argument for the following reasons:

This argument cannot work since a constant gauge
transformation is just a special case of a variable one; and

Relativity does not cause such a problem, since invariance of
the field φ under a constant change in phase, i.e. under a
constant gauge transformation, does not require that such a
transformation be carried out physically. The representation of
the field is only determined up to a constant overall phase,
making constant gauge invariance a theoretical symmetry
rather than an empirical one.

Healey points out that constant phase invariance is not an
empirical symmetry because only phase relations between two
distinct fields are observable. The empirical content of
constant gauge invariance is in the conserved Noether current
and charge.



Gauge Theories and the Gauge Argument

The Gauge Argument for a Complex Scalar Field

A Better Justification for Variable Gauge Invariance?

Healey cites a better justification of the move ‘from global to local’
gauge invariance (attributed to Auyang (1995) who follows Weyl
(1929)) as

an abandonment of the assumption that meaningful
comparisons even of relative phases may be made without
adoption of some prior convention as to what is to count
as the same phase at different space-time points. (162)

Regarding the choice of phase at different space-time points as
conventional is naturally accommodated by the fibre bundle
formulation, but this just makes a choice of variable gauge a choice
among one of many equivalent ways of representing the same
matter field. There are no empirical implications of this choice of
gauge.
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The Gauge Argument for a Complex Scalar Field

Loss of Lorentz and Gauge Invariance

Let us continue with the gauge argument. . .

Making the gauge transformation variable causes the transformed
Lagrangian to fail to be Lorentz covariant and the Lagrangian, as
it stands, is not invariant under this variable gauge transformation.
The change δL of the Lagrangian under the variable
transformation is

δL = (∂µΛ)Jµ,

where Jµ is the Noether current.
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Attempt to Restore Gauge Invariance

To restore invariance under the variable transformation, a new
4-vector field Aµ that couples directly to the current Jµ is
introduced, which adds an additional term to the Lagrangian L:

L1 = −JµAµ.

It is also required that

Aµ −→ Aµ + ∂µΛ

under a variable gauge transformation. Notice that this is of the
same form as the gauge transformation of the electromagnetic
potential Aµ.
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Attempt to Restore Gauge Invariance

Under a variable gauge transformation this new term and new
vector field that transforms as described produces a term that
cancels the term δL above, but produces an additional term so that

δL+ δL1 = −2Aµ(∂µ)φ∗φ.

Thus, an additional term is added to the Lagrangian:

L2 = AµAµφ∗φ,

which finally restores invariance, i.e.

δL+ δL1 + δL2 = 0.
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Implications of Restoration of Invariance

Thus, the Lagrangian

L+ L1 + L2 = (Dµφ)(Dµφ∗)−m2φφ∗,

where Dµ = ∂µ + iAµ is the covariant derivative operator, is
invariant under variable gauge transformations.

This Lagrangian
has the same form as the Klein-Gordon Lagrangian we started with
except that the ordinary derivative operator is replaced by the
covariant derivative operator.

We now see that as a result of demanding local gauge invariance,
so the argument goes, we have had to introduce a new vector field
Aµ that couples to the current Jµ of the complex field φ.
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The Gauge Argument for a Complex Scalar Field

Questioning the Introduction of a ‘New Field’

Since, in the usual form of the gauge argument, the field Aµ is
regarded as a new physical field, it is natural to make the move to
introduce a constant e along with the new field, i.e. to introduce
eAµ rather than Aµ as we have done, where e is the coupling
constant between the field Aµ and the current Jµ.

Healey and others point out that there is no good reason at this
point, beyond that of a suggestive heuristic, to regard the 4-vector
Aµ as a physical field, i.e. to think that Aµ 6= 0. It may just be an
artefact of extending the theory of the field φ to the case where
there is an arbitrary choice of variable phase.
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Completion of the Gauge Argument

If, however, Aµ is regarded as a new physical field, then the last
part of the gauge argument is that the vector field Aµ ought to
contribute directly to the Lagrangian.

Thus, a gauge invariant
term depending only on Aµ is sought. It is seen that the
4-dimensional curl of Aµ

Fµν = ∂µAν − ∂νAµ

is gauge invariant. Then, the term

L3 = −λFµνFµν

is both gauge invariant and Lorentz covariant, and is added to the
Lagrangian.
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Completion of the Gauge Argument

Notice that the fact that Fµν and Aµ are related by the equation

Fµν = ∂µAν − ∂νAµ

makes Aµ look a lot like the vector potential from electromagnetic
theory and makes Fµν looks a lot like the electromagnetic field
tensor!

(Of course, the choice of notation helps. . . ).
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Completion of the Gauge Argument

The inclination to identify Aµ with the vector potential and Fµν
with the electromagnetic field tensor is strengthened by the
following fact.

If the action integral with the new Lagrangian

Ltot = L+ L1 + L2 + L3

is determined to be stationary under variation of Aµ, then the
Euler-Lagrange equations yield

∂νFµν = J µ,

where J µ is a ‘covariant’ version of Jµ. These are identical in form
to the inhomogeneous Maxwell equations. It follows from this
equation, that

∂µJ µ = 0,

i.e. the current J µ is conserved. Thus, it is the current J µ that is
conserved when the field Fµν is present.
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Completion of the Gauge Argument

Thus, according to the usual gauge argument, as a result of the
preceding argument it is concluded that the insistence that the
Lagrangian be invariant under variable U(1) gauge transformations
requires the introduction of fields Aµ and Fµν , which are precisely
the electromagnetic vector potential and field tensor respectively.

If eAµ and eFµν are introduced rather than Aµ and Fµν as we have
done, and we set λ = − 1

4e2 , then the Lagrangian Ltot is precisely
the Lagrangian for a complex scalar field interacting with the
electromagnetic field.
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Triumph of the Gauge Argument?

Thus, the claim is that the demand of ‘local’ gauge invariance
requires the introduction of interaction of the complex scalar field
with the electromagnetic field.

If the same pattern of reasoning is applied to a Dirac field, i.e.
starting from the Dirac Lagrangian for a spin- 1

2 field, rather than a
Klein-Gordon (spin-0) field, then Ltot ends up being the
Lagrangian density for quantum electrodynamics.
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Questioning the Gauge Argument

The last part of the gauge argument, i.e. the part that ‘naturally’
leads to the introduction of the electromagnetic field, has a
weakness.

The term L3 is not the only term that can be added to the
Lagrangian that depends only on Aµ and is gauge and Lorentz
invariant.
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Questioning the Gauge Argument

Healey points out, however, that it has been shown by
O’Raifeartaigh (1979) that just introducing the term −1

4 FµνFµν

“yields the simplest, renormalizable, Lorentz- and “locally”
gauge-invariant Lagrangian yielding the second-order equations of
motion for the coupled system.” (166-167)

Healey adds that

So while the presence of this lacuna further undermines
the soundness of the gauge argument, it does little to
weaken the associated explanation of the properties of
electromagnetism. (167)

This argument does not work for QCD, however. . .
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Status of the Gauge Argument

Healey’s overall comment on the gauge argument is the following:

. . . while the gauge argument effects a significant
explanatory unification among the properties of diverse
fundamental interactions, it certainly does not dictate
their very existence. And while observations of charge
conservation may yield indirect support for an empirical
constant phase symmetry of matter fields, the gauge
argument neither rests on nor entails a principle of
“local” gauge symmetry with any empirical import, direct
or indirect. “Local” gauge symmetry is a theoretical, not
an empirical, symmetry. It is merely a feature of the way
gauge theories of electromagnetic, electroweak, and
strong interactions are conventionally formulated. (167)
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Extension of the Gauge Argument

Yang and Mills extended the gauge argument to examine fields
that are invariant under larger groups of internal transformations.

Yang and Mills considered a field with three real components that
is invariant under SU(2). This introduces new difficulties, since it
is a non-abelian group.
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Yang-Mills Field

Using a gauge argument, the requirement that the Lagrangian be
invariant under ‘local’, i.e. variable, SU(2) transformations requires
the introduction of a new field Wµ, which is the analogue of Aµ,
but has three 4-vector components.

The analogue of Fµν is a 3-vector with second rank tensor
components Wµν , which is obtained from Wµ according to an
equation like that of Fµν in terms of Aµ in the U(1) case but with
an additional term

gWµ ×Wν .

It is that the symmetry group is non-abelian that leads to the
introduction of this term. This term has interesting implications,
which includes the fact that the gauge field Wµν is self-interacting,
i.e. it is a source for itself.
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Yang-Mills Theory

Too Bad for Yang and Mills, However. . .

It turns out that the theory developed by Yang and Mills is not
instantiated in nature. Their method of how to develop the gauge
argument for a non-abelian symmetry group G has been
generalized and has found application, however.

For G = SU(3), the classical field theory that is quantized to
yield quantum chromodynamics can be obtained;

For G = U(1)⊗ SU(2), the classical field theory used to
develop electroweak theory can be obtained.

In case that G = U(1) the classical field theory that when
quantized yields quantum electrodynamics can obtained, which
becomes a particular case of the general Yang-Mills argument. For
this reason the quantum field theories of the standard model can
all be considered Yang-Mills theories.
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